• Skip to main content
  • Skip to primary navigation
  • Departments
    • Bioengineering
    • Civil and Environmental Engineering
    • Electrical Engineering and Computer Sciences
    • Industrial Engineering and Operations Research
    • Materials Science and Engineering
    • Mechanical Engineering
    • Nuclear Engineering
    • Aerospace program
    • Engineering Science program
  • News
    • Berkeley Engineer magazine
    • Social media
    • News videos
    • News digest (email)
    • Press kit
  • Events
    • Events calendar
    • Commencement
    • Homecoming
    • Cal Day
    • Space reservations
    • View from the Top
    • Kuh Lecture Series
    • Minner Lecture
  • College directory
  • For staff & faculty
Berkeley Engineering

Educating leaders. Creating knowledge. Serving society.

  • About
    • Facts & figures
    • Rankings
    • Mission & values
    • Equity & inclusion
    • Voices of Berkeley Engineering
    • Leadership team
    • Milestones
    • Buildings & facilities
    • Maps
  • Admissions
    • Undergraduate admissions
    • Graduate admissions
    • New students
    • Visit
    • Maps
    • Admissions events
    • K-12 outreach
  • Academics
    • Undergraduate programs
    • Majors & minors
    • Undergraduate Guide
    • Graduate programs
    • Graduate Guide
    • Innovation & entrepreneurship
    • Kresge Engineering Library
    • International programs
    • Executive education
  • Students
    • New students
    • Advising & counseling
    • ESS programs
    • CAEE academic support
    • Student life
    • Wellness & inclusion
    • Undergraduate Guide
    • > Degree requirements
    • > Policies & procedures
    • Forms & petitions
    • Resources
  • Research & faculty
    • Centers & institutes
    • Undergrad research
    • Faculty
    • Sustainability and resiliency
  • Connect
    • Alumni
    • Industry
    • Give
    • Stay in touch
Home > News > In a twist
Twisting light with a micromachine.Twisting light with a micromachine. (Image courtesy of Yuan Cao)

In a twist

Cover of Berkeley Engineer Fall 24 magazine with two people standing between two Amtrak cars
November 20, 2024
This article appeared in Berkeley Engineer magazine, Winter 2024
  • In this issue
    Professor Joshua Apte measures air quality aboard a diesel train bound for San Jose from San Francisco. (Photo by Adam Lau/Berkeley Engineering)

    Unequal burden

    Professor Rebecca Abergel peers through a positron emission tomography (PET) scanner at Berkeley Lab

    In sickness and in health

    A helicopter dropping water on a California wildfire in rugged terrain, backlit by a setting sun filtered through multiple layers of smoke.

    Burning questions

    Dean Liu shakes hands with Chancellor Lyons

    Innovation with impact

    Upfront

    • New glues
    • Staying alert
    • In a twist
    • Rising to new heights
    • On the map
    • A shark of inspiration
    • Q+A on AI and traffic management

    New & noteworthy

    • Manufacturing in microgravity
    • Precision under pressure
    • Farewell
    • Support Berkeley Engineering
    • Where inspiration meets innovation
    • Magazine survey
  • Past issues

Just a few years ago, researchers discovered that changing the angle between two layers of graphene, an atom-thick sheet of carbon, also changed the material’s electronic and optical properties. They then learned that a “twist” of 1.1 degrees — dubbed the “magic” angle — could transform this metallic material into an insulator or a superconductor, a finding that ignited excitement about a possible pathway to new quantum technologies.

To study the physics underlying this phenomenon, “twistronics” researchers had to produce tens to hundreds of different configurations of the twisted graphene structures — a costly and labor-intensive process. But a team of researchers led by Yuan Cao, the leading discoverer of the magic angle in 2018 and now an assistant professor of electrical engineering and computer sciences, has created a device that can twist a single structure in countless ways.

In a study, the researchers demonstrated the world’s first micromachine that can twist 2D materials at will. The fingernail-sized, on-chip platform, called MEGA2D, uses microelectro-mechanical systems (MEMS) to conduct voltage-controlled manipulation of 2D materials — which are only nanometers thick — with unprecedented flexibility and precision.

“Our work extends the capabilities of existing technologies in manipulating low-dimensional quantum materials,” said Cao. “It also paves the way for novel hybrid 2D and 3D structures, with promising implications in condensed-matter physics, quantum optics and related fields.”

According to the researchers, the MEGA2D platform has several potential applications beyond twistronics, including use as a tunable light source for classic, or standard, light bulbs as well as for quantum versions. For now, the team believes that the true power of the MEGA2D technology lies in fundamental research. “It will certainly also bring other new discoveries along the way,” said Cao.

Learn more: World’s first micromachine twists 2D materials at will; On-chip multi-degree-of-freedom control of two-dimensional materials (Nature)

Topics: Quantum, Electrical engineering, Energy, Materials science, Nanotechnology
  • Contact
  • Give
  • Privacy
  • UC Berkeley
  • Accessibility
  • Nondiscrimination
  • instagram
  • X logo
  • linkedin
  • facebook
  • youtube
  • bluesky
© 2025 UC Regents