• Skip to primary navigation
  • Skip to main content
  • Departments
    • Aerospace Engineering
    • Bioengineering
    • Civil and Environmental Engineering
    • Electrical Engineering and Computer Sciences
    • Engineering Science
    • Industrial Engineering and Operations Research
    • Materials Science and Engineering
    • Mechanical Engineering
    • Nuclear Engineering
  • News
    • Berkeley Engineer magazine
    • Social media
    • News videos
    • News digest (email)
    • Press kit
  • Events
    • Events calendar
    • Homecoming
    • Cal Day
    • Commencement
    • View from the Top
    • Kuh Lecture Series
    • Minner Lecture
  • College directory
  • For staff & faculty
Berkeley Engineering

Educating leaders. Creating knowledge. Serving society.

  • About
    • Facts & figures
    • Rankings
    • Mission & values
    • Equity & inclusion
    • Voices of Berkeley Engineering
    • Leadership team
    • Milestones
    • Facilities
    • Maps
  • Admissions
    • Undergraduate admissions
    • Graduate admissions
    • Visit
    • Maps
    • Admissions events
    • K-12 outreach
  • Academics
    • Undergraduate programs
    • Majors & minors
    • Undergraduate Guide
    • Graduate programs
    • Graduate Guide
    • Innovation & entrepreneurship
    • Kresge Engineering Library
    • International programs
    • Executive education
  • Students
    • Advising & counseling
    • Programs
    • Academic support
    • Student life
    • Wellness & inclusion
    • Undergraduate Guide
    • Degree requirements
    • Forms & petitions
    • Resources
  • Research & faculty
    • Centers & institutes
    • Undergrad research
    • Faculty
  • Connect
    • Alumni
    • Industry
    • Give
    • Stay in touch
Home > News > Materials genome to solar fuels
Comparing potential solar fuel materials

Materials genome to solar fuels

Cover of Fall 2017 Berkeley Engineer magazine
November 1, 2017
This article appeared in Berkeley Engineer magazine, Fall 2017

It took four decades for researchers to find 16 photoanodes, or materials that will generate electrical current in response to light. But using a new set of research tools, a team from Berkeley Lab and Caltech, including materials science and engineering professor Kristin Persson, has recently identified 12 more. The discovery is significant because photoanodes hold promise for creating solar fuels by converting sunlight, water and carbon dioxide into a usable form of energy without creating noxious emissions. But maybe even more significant is the method by which the new photo-anodes were found. Using Berkeley Lab’s Materials Project — which Persson directs — and in collaboration with the Joint Center for Artificial Photosynthesis, the Molecular Foundry and the National Energy Research Scientific Computing Center, the researchers were able to mine the Materials Project database for good solar fuel candidates. Then using a high-throughput theory-experiment pipeline, the team was able to quickly identify, synthesize and test the best candidates, a process that holds promise for future materials research.

Topics: Energy, Faculty, Materials science, Research
  • Contact
  • Give
  • Privacy
  • UC Berkeley
  • Accessibility
  • Nondiscrimination
  • instagram
  • twitter
  • linkedin
  • facebook
  • youtube
© 2023 UC Regents